MATH 5061 Problem Set 2¹ Due date: Feb 26, 2024

Problems: (Please hand in your assignments by submitting your PDF via email. Late submissions will not be accepted.)

Throughout this assignment, we use (M,g) to denote a smooth *n*-dimensional Riemannian manifold with its Levi-Civita connection ∇ unless otherwise stated. The Riemann curvature tensor (as a (0,4)-tensor) of (M,g) is denoted by R.

- 1. Prove that the antipodal map A(p) = -p induces an isometry on \mathbb{S}^n . Use this to introduce a Riemannian metric on \mathbb{RP}^n such that the projection map $\pi : \mathbb{S}^n \to \mathbb{RP}^n$ is a local isometry.
- 2. Show that the isometry group of \mathbb{S}^n , with the induced metric from \mathbb{R}^{n+1} , is the orthogonal group O(n+1).
- 3. For any smooth curve $c: I \to M$ and $t_0, t \in I$, we denote the parallel transport map as $P = P_{c,t_0,t} : T_{c(t_0)}M \to T_{c(t)}M$ along c from $c(t_0)$ to c(t).
 - (a) Show that P is a linear isometry. Moreover, if M is oriented, then P is also orientation-preserving.
 - (b) Let X, Y be vector fields on $M, p \in M$. Suppose $c : I \to M$ is an integral curve of X with $c(t_0) = p$. Prove that

$$(\nabla_X Y)(p) = \left. \frac{d}{dt} \right|_{t=t_0} P_{c,t_0,t}^{-1}(Y(c(t))).$$

4. Prove the second Bianchi identity: for any vector fields $X, Y, Z, W, T \in \Gamma(TM)$,

 $(\nabla_X R)(Y, Z, W, T) + (\nabla_Y R)(Z, X, W, T) + (\nabla_Z R)(X, Y, W, T) = 0.$

¹Last revised on February 3, 2024