MATH 5061 Problem Set 2^{1}

Due date: Feb 26, 2024

Problems: (Please hand in your assignments by submitting your PDF via email. Late submissions will not be accepted.)

Throughout this assignment, we use (M, g) to denote a smooth n-dimensional Riemannian manifold with its Levi-Civita connection ∇ unless otherwise stated. The Riemann curvature tensor (as a (0,4)-tensor) of (M, g) is denoted by R.

1. Prove that the antipodal map $A(p)=-p$ induces an isometry on \mathbb{S}^{n}. Use this to introduce a Riemannian metric on $\mathbb{R} \mathbb{P}^{n}$ such that the projection map $\pi: \mathbb{S}^{n} \rightarrow \mathbb{R} \mathbb{P}^{n}$ is a local isometry.
2. Show that the isometry group of \mathbb{S}^{n}, with the induced metric from \mathbb{R}^{n+1}, is the orthogonal group $O(n+1)$.
3. For any smooth curve $c: I \rightarrow M$ and $t_{0}, t \in I$, we denote the parallel transport map as $P=P_{c, t_{0}, t}$: $T_{c\left(t_{0}\right)} M \rightarrow T_{c(t)} M$ along c from $c\left(t_{0}\right)$ to $c(t)$.
(a) Show that P is a linear isometry. Moreover, if M is oriented, then P is also orientation-preserving.
(b) Let X, Y be vector fields on $M, p \in M$. Suppose $c: I \rightarrow M$ is an integral curve of X with $c\left(t_{0}\right)=p$. Prove that

$$
\left(\nabla_{X} Y\right)(p)=\left.\frac{d}{d t}\right|_{t=t_{0}} P_{c, t_{0}, t}^{-1}(Y(c(t)))
$$

4. Prove the second Bianchi identity: for any vector fields $X, Y, Z, W, T \in \Gamma(T M)$,

$$
\left(\nabla_{X} R\right)(Y, Z, W, T)+\left(\nabla_{Y} R\right)(Z, X, W, T)+\left(\nabla_{Z} R\right)(X, Y, W, T)=0
$$

[^0]
[^0]: ${ }^{1}$ Last revised on February 3, 2024

